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Abstract~The Cattaneo problem is considered for a general plane contact between elastically
similar materials, i.e. a mOllC.tonically increasing tangential load. starting from zero, with normal
loading held fixed. Instead or the classical argument on the displacement field in the stick zone of
Cattaneo solution, we attack the problem implicitly from the governing integral equations in the
stick zones. After discussing and solving the full-stick case, we move to the more realistic (for finite
friction) case of partial slip. We show that, upon isolating the effect of full sliding, the equalities
and inequalities governing the corrective solution for the corrective shearing tractions in the stick
zone are exactly the same as those governing the solution of the normal contact problem with a
lower load, but the same rotation as the actual one. This analogy permits us to deduce several
general properties, and give, a general procedures for solving partial slip Cattaneo problems as
frictionless normal indentation ones. Therefore, the general solutions for single, multiple and
periodic contacts is given. A comprehensive set of explicit results is given in the part II of the paper.
D 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

The well-known Cattaneo procedure (Cattaneo, 1938) has for a long time been the most
widely used technique for solving a contact in the partial slip regime. Cattaneo attacked
the problem of partial slip considering a constant normal component of the load P, and a
monotonically increasing tangential component Q, starting from zero, for the general 3D
Hertzian case of elliptical contact area. He used an argument involving the displacement
field in the stick zone, where, because of symmetry and Newton's third law, the relative
tangential displacements of the contacting bodies can be only a rigid body motion. In two
subsequent papers (Cattane.:), 1947a, 1947b), the axisymmetric case for a fourth-order
function is also treated. The ,impler case for axisymmetric and elliptical Hertzian contacts
was treated again several years later, apparently independently, by Mindlin (Mindlin, 1949),
whereas some generalization:; of the loading path were considered in Mindlin et al. (1952),
and Mindlin and Dereciewicz (1953). Experimental evidence of the theory was provided
also by Johnson (1955). Although sometimes the tangential problem is referred to as the
Cattaneo-Mindlin problem, we shall refer in this paper to the Cattaneo problem, for clarity,
as we reconsider the original :Jroblem considered by Cattaneo, namely the single monotonic
application of tangentialloacl starting from zero, whereas the Mindlin problem should refer,
more appropriately, to the innovative part of Mindlin's work, namely the general loading
path in the papers of 1952-1953.

For the classical basic case in plane geometry, namely the contact ofcylinders (approxi­
mated by parabolas), several aspects of partial slip for elastically similar or dissimilar
materials have already been worked out in detail, either analytically or numerically, includ­
ing the effect of the presence of bulk stresses in one of the contacting bodies, and for the
principal results the readers referred to Hills et al. (1993, Chapter 4). Apart from this
geometry, very few other cmes of Cattaneo's partial slip plane problems have been solved
to date. In practice, to the best of the author's knowledge, there is only the case of the
wedge indenter, recently solved by (Truman et al., 1995). This is probably because the
Cattaneo procedure involves the explicit calculation of the displacements induced, whereas

t Transmitted by D. A. Hills.
:t Permanent address: Dipartirnento di Progettazione e Produzione Industriale, Politecnico di Bari, Viale

Japigia 182,70126 Bari, Italy.
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Fig. I. General multiply-connected plane contact.

our method will conpletely avoid this step, formulating the problem directly in terms of
integral equations. For plane contacts there is, in fact, exact correspondence (except from
a constant) between tangential displacements due to a distribution of shearing tractions on
the half-plane, and normal displacements due to a similar distribution of normal tractions.
With this in mind, we will show an analogy between the case of partial slip for the
Cattaneo problem, and the normal frictionless indentation, and subsequently obtain general
properties. These properties will hold in very general cases~~~forexample we do not require
the contact area to be simply-connected.

Analytical results can then be obtained for all the geometries for which the normal
frictionless contact can be solved analytically. We will recall general solutions of the contact
problem, that translate immediately into solutions for a partial slip Cattaneo problem. In
particular, general solutions in quadrature are given for the case of single contact (either
symmetrical or non-symmetrical), multiple contact, and periodic contact. Regarding
explicit solutions, part n of the paper gives details of the derivation of many closed form
solutions for cases of engineering interest.

It is worth remarking that we consider, as the main result, the property that permits
us to show that a Ca:taneo partial slip contact problem can be interpreted as a superposition
of normal contact ones, by using a full sliding component and a corrective problem where
the normal load is reduced appropriately, but the relative rotation is fixed to the value
given by the actual normal contact. This greatly simplifies the solution of the Cattaneo
problem in general, including the numerical solution of cases where the analytical formula
are cumbersome to:reat.

2. FORMCLAnON

In order to keep the formulation as succinct as possible we will first write down the
governing equations for the most general case. Figure I shows schematically an indent
subject to a normal force, P, a moment M (clearly it is always possible to find a point of
application of P such that M = 0, but we indicate with M the moment with respect to
x = 0, and Pis apJ:lied along the line x = 0). At the end of the normal loading phase, a
tangential force Q is applied (further details will be given below) at y = 0. It is assumed
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that there are stick zones Sst cb and slip zones Sslip, wherein the shear tractions are strictly
related to local normal pressure by Coulomb's friction law, as given below.

Define the function h(:c) as the amount of overlap if the bodies were allowed to
interpenetrate each other fredy, as

hex) = T).+Rx-[fl(x)-f~(x)l (I)

where f;(x), f2(X) describe [he profile of the upper and lower (I and 2, respectively)
contacting bodies, T, and R are the normal and rotational components, respectively, of the
rigid body motion that brings the two bodies into contact, given in the fixed coordinate
system x - y. Compatibility of displacements in the normal direction gives a first equality
(inequality) over the contact area S (outside S) in terms of the y-component of relative
displacements u = U, -U2

U,(X) = hex), XES

U,(X) > hex), x¢: S

(2)

(3)

where the latter condition avoids interpenetration outside the contact area (note that the
contact pressure can only be compressive, as for definition, tensile stresses cannot be
sustained, so that p(x) = cryy(x, 0) < 0, XES). Equation (2) can be written in terms of the
traction distribution, by employing logarithmically singular integral equations, whereas
inequality (3) becomes a non-singular integral inequality. However, as the displacements
in contact problems for half-planes are logarithmically unbounded at infinity, it is usually
preferred to work with displacement derivatives, writing

I, I f p(~) d~
- /; (x) = - --:--" - f3q(x),
A IT s x-~

XES (4)

where the integral has to be interpreted as the Cauchy principal value, and appropriate side
conditions must be given to choose the physically meaningful solution from the space of
the mathematical solutions, a, discussed in the definitive treatise by Muskhelishvili (1953).
These side conditions depends on the behaviour (bounded/unbounded) of the unknown
functions at the ends of contact areas, and on whether the area is connected or not.
Note that a solution to the integral equation itself, either in terms of displacements, or
displacement derivatives, will not necessarily satisfy the inequality condition [eqn (3)), in
particular in the case of multiply-connected contact area. This is generally checked a
posteriori. In the previous equation

is a measure of the "composite compliance" of the bodies, and

f3 = /l2 (K, - I) - /ll (K 2 - I)

/12(K, +1)+/l,(K2+ I)

(5)

(6)

gives a measure of the "elastic mismatch" and is known as a Dundurs' constant; moreover,
K is Kolosov's constant, given by K = (3 -4v) under plane strain conditions (Vi, /li are the
Poisson's ratio and shear modulus of the material of body i). Equilibrium provides fixed
side conditions: the resultant r'orces P (positive compressive force), tangential force Q, and
moment 11,1 satisfy



2352 M, Ciavarella

P = -f p(x) dx
s

Q = +Lq(x)dx

~

M = -J p(x)xdx
s

(7)

(8)

(9)

where it is intended that M is the moment with respect to the origin of the coordinate
system x = 0, and the contact area S is not necessarily connected,

The second int~gral equation defining the problem relates to displacement of particles
parallel with the surface. It reads, again using displacement derivatives, as

I 1fq(C) de:
-g'(x)=~ -.--~+f3p(x), XES
A n s x-~

(10)

where g(x) = ux(XI is the relative tangential displacement of surface particles,
g'(x) = dg(x)/dx its derivative, q(x) = (Tn (x, 0) the shearing traction distribution, and the
integral has to be interpreted again as Cauchy principal value. Note that hex) and g(x),
whilst to some degree analogous, have very different roles in eqns (2) or (4), and eqn (10),
as the first is prescribed whilst the second is, at this stage, a dependent variable. In fact,
considering a pair of points in the two contacting bodies: before coming into contact, their
relative tangential displacement is free (in particular, note that it can have either sign,
depending on the elastic properties of the material; this differs from the condition for the
normal contact (3), where the relative normal displacement of points not in contact must
be less than the original gap between them, otherwise there is contact outside the intended
domain). Also, q(x) can have either sign, butp(x) cannot. Therefore, whilst eqns (2) or (4)
already incorporates a boundary condition, eqn (10) does not. When a pair of points comes
into contact, the magnitude of their relative tangential displacement is still free, if they lie
in a slip zone, providing its sign is consistent with the sign of the shear tractions (see below),
whereas within the :,tick zone the relative tangential displacement of surface particles is
equal to the value W:len the particles first enter the stick zone and, thereforet

or

g'(x) = g~(x), XE Sstick (I 1)

where T, is the tangeltial component of the rigid body motion, and go (x) is the value before
entering the stick afl~a. For points outside the contact area x ¢ S, eqn (10) still holds, as
g(x) is simply defined as the relative tangential displacement of pairs of surface particles,

The shearing traction must be less than the limiting value in Ssticb i.e,;

Iq(x)1 < -fp(x), XESstick'

Further, within the slip zones the shearing traction is limited by friction, so that

(12)

t When a surface bulk strain, parallel with the surface is present, which is not due to the contact, it must be
taken into account (Hills EI al., 1993),

t Note that the negative sign is due to our convention p(x) = an (x, 0),
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Iq(x)1 = -fp(x), XE Sslip
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(13)

and the shear traction must llways oppose the direction of relative change in the direction
of slip, i.e.

sgn(q(x)) = sgn (~~} x E Sshp' (14)

The above equations provid~ a framework for the solution of the problem, although they
may not be exhaustive in the case of contact between elastically dissimilar components, for
which an incremental formulation is required in general.

Considering the case when the contacting bodies are elastically similar, or more specifi­
cally, Dundurs' constant f3 vanishest, i.e.

(15)

eqns (4) and (10) are uncoupled, and solutions for the normal and tangential loading may
be obtained independently. For this general construction of the integral equations, it is
clear that the equalities and inequalities are different in number and appearance, for normal
and tangential displacements: there is no shear equivalent for inequality (3), and the
conditions given by Coulorrb's law (12)-(14) clearly have no equivalent for the normal
direction.

However, let us consider a particular path in loading space, defined as follows: apply
a normal force and hold it I1xed while increasing a tangential force monotonically from
zero. On applying the normal load, P, alone, there is no tendency in any case for surface
particles to slip and, hence, the initial stick zone envelopes the entire contact, as

g~(x) =0, XES. (16)

A monotonically increasing shearing force, Q, will then give rise to advancing slip, and
under these circumstances, eqn (14) is automatically satisfied.

2.1. Fully adhesive conditiom'
At this stage, Cattaneo (1938) shows that, for Hertzian contacts, a fully adhesive

solution implies a singular traction distribution at the edge of the contact area. In fact, this
result is independent of the geometry of the indenter, as it follows immediately from
substituting eqn (16) into eqn (10), obtaining

o= ~f q(~) ~~, XES
n s X-C;

(17)

and the solution of this eque.tion is that of the normal contact problem for a rigid punch
(with one, or several, flat areas of the same heights) pressed into the half plane and,
therefore, is singular at each edge (Muskhelishvili, 1953). In particular, we give below the
solution in the form derived by Scthayerman (1949). It may be appreciated that the solution
will be independent of the actual solution of the contact problem, i.e. the form of shearing
traction is the same for any profile, providing the contact area (or the distribution of contact
areas) is the same.

2.2. Partial slip conditions
We now seek solutions for contacts with finite friction, where we have to assume that

slip occurs at the edge ofeach contact area. In other words, the shearing traction distribution

t Note that the condition is valid not only for a couple of similar materials, but many other cases of
engineering interest. like steel on rubber. satisfy the condition f3 = o.
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will be a correction of the full sliding term in the stick zone, of dimension and location
presently unknownt Also, it is possible to reconsider this idea from a different point of
view. It is clear that, lccording to this classical construction of the integral equations, there
is no symmetry between either the equalities or inequalities in the normal and subsequent
tangential loading phases, even for elastically similar materials. Thus, it is not possible a
priori to draw any particular general conclusion regarding the distribution of shearing
traction in the stick area. Let us reconsider the problem in the partial slip regime obtained
by Cattaneo's superposition of a full sliding component and a corrective part q*(x) in the
stick zone, of location and dimension presently unknown, so that assuming a direction for
Q such that the full sliding would be Q < 0, one has

{
fP(X) +q*(x),

q(x) = .
fp(x),

XESsti"k

XE Sslip
(18)

Then, the integral equation for relative displacements in the tangential direction states,
using eqn (16) again and substituting eqn (4) for the full sliding component:

If (c)d!' / If *(")d"o==~ q,- /=-h'(x)+- ~~
n s x-I, A n \ x-~

sULk

(19)

where Sstlck is the stick zone, and q*(x) = 0 in the slip zones, by definition. Then, q*(x) is
the solution of the following integral equation:

I r -q*(")!l I
~.'J ---=-~d~ = -h'(x), XESstick
n S,uck X -I., A

(20)

which can be recognized as being of the same form as the original equation for normal
contact for f3 = 0, een (4) [with p(x) replaced by -q*(x)!/: and the domain of the integral
suitably scaled]. Note that the value of the function h'(x) is given by the actual normal
contact problem. In particular, it is clear that, if we had used displacements instead of
displacement derivatives, the right-hand side of eqn (20) would differ by a quantity - Tjf
with respect to hex), as can be seen by considering the value of g(x) and not g'(x) in eqn
(II). In writing displacement derivatives, we lose information corresponding to the term
- T,!f; but we find a consistent solution, as usual, through the equilibrium side condition
(in particular the load is lower, IQI <fP). What is important, by contrast, is that we do
keep information of the actual rotation in both the function hex) and h' (x), and this gives
the condition for the partial slip solution to be determined. Therefore, whereas in the
normal loading pha~,e it does not matter whether we reach the actual value of hex) through
any particular path, as there is no path-dependence, in the analogy we need to consider the
decrease of normal load, with afixed value of rotation. In other words, whereas in the
actual normal indertation, the resultant load P (considering the point of application for
which there is no moment) can be applied following any path of application, in the analogy
the load P has to be downloaded along a path that gives no change of rotation.

As in the normal contact problem, we force continuity of the shear traction (and
displacements) throughout the stick/slip region, and require the corrective solution to be
unbounded at the fdges of the stick zonet, in order to avoid singularities that are not
allowed by Coulomb's law. Now, the analogy is only partly proved, as we need to check
that the inequalities also correspond. Coulomb's law again requires Iq(x)1 < -fp(x) in the
stick zone [eqn (12:,], and this maps into the condition that, according to the definition
(18), q*(x) must be of opposite sign of p(x), which is guaranteed by comparing eqn (4)
with eqn (20), and also the requirement that contact tractions are compressive. The limiting

t To note that assuming finite friction does not mean that the shearing tractions are always a bounded
function, as they may be singular if the normal pressure is singular.

t Except the limit case when the stick zone coincide with the entire contact area. that is possible in flat
contacts, see below.
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condition Iq(x) I = -fp(x) in the slip zones [eqn (13)] is implicitly satisfied by the assump­
tion q*(x) = 0 in the slip ZO:les. Finally, the condition that the shear traction must always
oppose the direction of relative change in the direction of slip [eqn (\ 4)] is automatically
satisfied by the proposed rescaled normal contact problem, as the condition of reverse slip
starting in the stick zone is easily shown to be impossible and, therefore, the assumed sign
of the full sliding component is correct in the entire slip zone, by comparing the resulting
traction. This depends on a theorem in normal frictionless contact that the contact pressure
at all points increases monot<Jnically with the normal force, i.e. there is no point or situation
at which an increment of normal force causes a decrease in local contact pressure (Shield,
1967; Barber, 1992, Section 21.2). Therefore, the condition of interpenetration [eqn (3)]
also has an equivalent, which implies that, in generaL relative tangential displacement is
different from zero (in particular, the sign of relative displacements depends on the sign of
the tangential force) in the slip zones, which simply means that wear has to result, and
energy has to be dissipated in that region.

The inequalities that determine the size of the contact area during application of the
normal load, correspond to inequalities that determines the size of the stick zone in the
sequential tangential problem (i.e. the dimension of the stick zone is related to the applied
load through the tangential equilibrium condition, eqn (8».

The last remarks involvl~ side conditions: for a simply-connected contact area, the side
conditions for normal contact are:

• if the contact area is known a priori, the solution (pressure distribution) is unbounded
at the edges, and equilibrium gives the only side condition necessary to find the arbitrary
constant in the solution;

• if the contact area is unknown, two additional side conditions are provided by the
requirement that the pressure distribution has to be bounded, and in particular zero, at the
edges; these two conditions ,~ive the load, and the offset of the contact area. In the case of
symmetry, one condition is clearly sufficient, and gives the load, as the offset is automatically
determined to be zero with rl~spect to the line of symmetry.

In both cases, if there is also rotation, the unknown angle of rotation (or the unknown
moment) are determined fron rotational equilibrium.

For a multiply-connected contact area (say N areas), similar conditions apply, namely:

• if the edges of the cOltact area are all known a priori (a set of flat surfaces), the
solution (pressure distribution) is unbounded at the edges, equilibrium gives the side
condition necessary to find one arbitrary constant in the solution, and N ~ lather conditions
are provided by the jumps in the relative normal displacements to be consistent with the
jump in the profile, to give the other N - 1 arbitrary constants in the solution;

• if some edges of the contact area are unknown a priori, a corresponding number of
conditions are provided by the requirement that the pressure is zero at those edges.

These conditions transh,te without major modification into the corrective solution. In
fact, for a single contact area, two situations are possible: the profile is non flat, and the
corrective solution is zero at the boundaries of the stick zone; or the profile is flat, and then
the corrective solution is of the same form as the full sliding one, equilibrium determining
the single unknown arbitrary constant in the solution. For a set of flat areas, the contact is
either in full sliding or full stick in each area, the condition being determined by the
jump conditions, and equilibrium. For smooth profiles, the location of the stick zones is
determined by the conditior that the corrective solution is zero at that edges. The only
difference is that the rotational equilibrium condition does not apply (the reason being that
we have assumed Q to be applied at y = 0), but this is compensated by the fact that the
rotation is fixed to the value in the actual contact problem; therefore, the number of
conditions and variables is equal again.

The analogy between p(x) in the normal contact problem in the contact area, and
- q*(x)/fin the stick zone for tangential sequential loading is, therefore, fully and rigorously
completed, and the theorem, that ensure existence and uniqueness of the solution of the
normal frictionless problem (Fichera, 1964; Duvaut and Lions, 1972), automatically prove
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existence and uniqueness of the corrective solution found for the partial slip problem. Also,
they provide variational methods for the solution of the corrective problem (in particular
the surface displacenents and the true stick zone minimize the total strain energy of the
corrective problem) (KalkeI', 1977) in terms of minimization of the total complementary
energy (Kikuchi and Oden, 1977). There is no need for us to restate these principles
explicitly, as the corrective problem is mathematically exactly the same as a normal fric­
tionless contact proclem.

Therefore, the following properties of the corrective solution and the partial slip regime
can be deduced imm~diately:

• if the indenter profile is symmetrical and self-similar, the corrective solution is of the
same shape as the normal pressure in the contact area for any load;

• no partial slip solution can be predicted where the stick zone lies entirely within a
flat region of the punch; in other words, flat regions are either entirely in full stick
or are in full slip conditions. It is also possible to say that the local Coulomb law for
friction, with 1 characteristic local stick-slip behaviour, becomes a global property
for the flat part of the contact. In the limit case of an entirely flat contact, in particular
a set of flat ar~as of equal height, the full stick-full slip behaviour is global, and the
local Coulomb law translates into a global Coulomb law;

• if in normal indentation there is no change of relative rotation, then the points that
come into contact last, are the first to slip; in general the path followed by points
that lose contact during a monotonic decrease of the normal load from the actual
value, but with a fixed rotation, gives the path of points entering slip zones during a
monotonic application of tangential load from zero;

• if the indenter profile has discontinuities, these affect the tangential load, stick area
dimension relation in the same way as they affect the normal load, contact area
dimension. This will be clarified below.

Finally, the magnitude of relative shear displacement in the slip zones may be found
directly from

I f (") d j: f' I I' *(") d"
g'(x)=- ~-='---h'(x)+- . ~«O,

n s x - (A n • s"", x - (
(21)

which is an ordinary integral, much easier to compute numerically with any standard
procedure (but it is very often possible to compute in closed form), and for which the
inequality comes from eqn (3), as already discussed. The absolute displacements can be
found by integrating from the stick zone, where g'(x) is known.

3. SOLUTION OF THE GENERALIZED CATTANEO PROBLEM

Apart from these general properties, the analogy proved allows us to solve easily all
the configurations for which the normal contact is solved. In the following, we give a full
account of the case of a single contact area with arbitrary profile contact, where the solution
is elementary, and can be found in closed form for many configurations, as discussed in
details in part II of the paper. In more general cases, such as the multiple contact area, or
periodic contact, th~ solutions for an arbitrary profile are quite cumbersome to use, and a
direct numerical approach has generally been preferred in the past. Also, they are available
often only in the Russian literature [as for example in Schtayerman monograph (1949)],
but they give insight into properties of the contact itself. Moreover, the use of modern
symbolic and numerical library software can justify their use in some cases, as this will
certainly provide greater accuracy than a general direct numerical solution of the contact
problem.

In particular, in Appendix I we recall the solution in the form given by Schtayerman
(1949) for a general profile in multiple contact, over the range 0; ~ x ~ b;, i = I,., . ,n. The
solution depends on a set of coefficients Co, C 1 , ••• , Cn - 2 of a polynomial P"-l (x), that are
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determined to give to the vertical displacements lI,(X) the proper jumps (the conditions are
fully given in Appendix I). If some contact edges are not known a priori, a corresponding
number of equations is giver from the condition that the pressure has to be zero there. If
the number of contact areas is infinite, and the contact is periodical (the period does not
necessarily involve only one contact area), the solution is again given by Schtayerman
(1949) and reported in Appeldix 2.

3.1. Full stick condition-single contact area
In the case of a single, simply-connected symmetrical contact region, the full adhesive

solution for the shearing traction is

(22)

and corresponds to the pressure distribution for a flat punch.

3.2. Full stick conditions-multiple contact area
The solution corresponds to the frictionless normal contact in the case of a profile

composed of a set of flat surfaces, i.e. h' (x) = 0, for am ,,;; X ,,;; bm , m = 1, ... ,n, and in
particular, for the case where the flat areas are at the same height, as can be understood
from condition (11) for g(x) = T,. Therefore, we find from the solution given in Appendix
1

where

q(x) = (_I)"~m (23)

(24)

Coefficients Do, D 1 , ... ,DIl - 2 of polynomial QIl-1 (x) are determined from the system of
linear equations in order to give to g(x) the proper constant value, i.e. to satisfy the original
integral equation in terms of displacements.

3.3. Full stick conditions-pei"iodic contact area
The solution corresponds to the frictionless normal contact in the case of a periodical

set of flat surfaces of equal height, i.e. h' (x) = 0, over the range am ,,;; X ,,;; bm , (m = 1, ... , n).
Appendix 2 gives the general solution for the contact problem and, therefore, also of this
particular case. In the case where the period is equal to only one contact area, which is
perhaps the case of greater in':erest, n = 1, h'(x) = 0, over 112 - a ,,;; x,,;; 1/2 +a, the solution
IS

r;:. nx

(

' Qy2cosT
q ~+x)= --------,

, Inx na
l..Jcos T -coST

(25)

where Q is the load per contact area. Note that in the limit when 1= 2a, the shearing
distribution goes towards the uniform limit.
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3.4. Partial slip conditions-simple contact area
Starting again by recalling the results for the normal contact problem, let us consider

the case of a single contact region, for the unsymmetrical function hex) case (the symmetrical
case will be recovered easily). The size of the contact area is fixed by the normal load P. If
the contact area is not symmetrical with respect to the origin, say - a + 6 ~ x ~ a + 6, on
assuming

t = r+6, x = (+6

the integral equation becomes (Schtayerman, 1949)

1 I fa p(r+6) dr
~h'((+6) = - ---~~-

A rr -a (~r

(26)

(27)

where a is the semi-dimension of the contact area, and 6 is the offset with respect to the
origin of coordinate, x = 0, in which the function h is defined by eqn (I). The additional
condition to determine the offset 6 is provided by rotational equilibrium [eqn (9)]. The
solution in the case of a general profile in contact over the range - a ~ ( ~ a is, under the
hypothesis that bothp(( = a) andp(( = -a) are bounded [the contact is called incomplete
and it may be proved that in particular p(( = ± a) = 0], is

, 1 !,,~ ra
h',(r+6) dr

p((-I-o) = -Va" -I;: , , " .
rrA .-a",/cr-r(r-()

(28)

together with the conditions p(( = ±a) = 0, and equilibrium between the applied load and
the pressure distribution, translate into the following two equations

f
a-Ii, If" h'(r+6)rdr

P = - pet) dt = --
-a+,\ A --a J a2 _r 2

(29)

To determine the moment M, we require, for rotational equilibrium:

f
a+6 fa

M = - -0+6 p(t)tdt = - _/(r+6)(r+6) dr

(30)

Moving to the solution of the partial slip Cattaneo problem, as a consequence of the
analogy established, the stick zone is not necessarily positioned symmetrically relative to
the origin, i.e. - c + 6* ~ x ~ c + 6*, and so let us assume

t = r+6*. x = 11+6*

the corrective solution in the stick zone is

1 !~J~~J J~c h'(r+6) dr
-q*(17+6)!f=-~c-l1- ,r" '

rrA _, ~ c" -r (r -11)
-c~l1~c

(31 )

(32)

where c is the semi-dimension of the stick area, and 6* is its offset with respect to the origin
of coordinates x = 0, with respect to which the function h is defined as eqn (1). The
conditions q*(11 = =[ c) = 0, and equilibrium translate into the following two equations
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f
e h'(r+<5*) dr

!) , = 0,
-c ~c-r

*. I fe h'(r+<5*)dr
-Q !.f = - -A _, ----

_ /C 2 _'[2
'v

(33)

These equations give the offset <5*, and the size of the stick zone c. Note that, for a
non-symmetrical self-similar profile (i.e. the functions on the right and the left of the x = °
axes are each self-similar) the offset of contact area, and offset of stick zone are proportional,
i.e. <5/<5* = cia, as the rotation is fixed. The tangential load may be calculated from

f If' h'(r+<5)rdr
Q = P+ - !')

A _, ~c-r

where c is the semi-dimension of the stick zone. Let us define

<1>(x,y) = xf' ~!(t~/)t?~.
--x ~x~-t-

(34)

(35)

The ratio of the transmitted forces QIIP, which ranges from 0, for normal loading only
contact, to I, for full sliding, is, therefore, related to the stick zone size by

Q <1>(c, <5*)
IP = 1- <1>(a, <5) (36)

where the denominator is clearly constant upon increasing the tangential load, whereas the
numerator gives the variation with cia, and <5*/<5. Note that the symmetrical case (and with
no rotation) is recovered from the previous equations by setting <5* = () = 0.

3.5. Partial slip conditions-multiple contact area
The solution of the contact problem (i.e. in terms of the pressure), is given in Appendix

I in the general form. On m:wing to the partial slip problem one has only to correct hex)
by - T,!.l However, as hex) appears only as its derivative h'(x), or as a difference between
edge values, there is no need to do this explicitly. Therefore, we need to just make use of
the solution given in Appendix I. First, define a set of stick areas ei :<;;; x :<;;; di , i = I, ... , n,
and substitute ai' bi with ei, d"p(x) with - q*(x)/./; the polynomial Pn - I (x) with a poly­
nomial Q~_I (x) with coefficients D~, Dr, . .. , D~ 2' and finally the load P with the load
- Q*!.f:

3.6. Partial slip conditions-periodical contact area
The solution of the contact problem is given in Appendix 2 in the general form. On

moving to the partial slip problem, appropriate substitutions should be made to find the
dimension of the stick zonc:s from the side conditions, and the form of the corrective
shearing distribution in the stick zones. As the notation is quite heavy, we do not give
explicit details of the resulting solution, as it is clear that the procedure follows the same
rules of the preceding sections.

4. CONCLUSIONS

Partial slip contact has been considered and new general results developed, in the
framework of contact of bodies that can be approximated as elastic half-planes. Cattaneo's
problem of sequential tangential loading has been reworked, and we have shown that the
corrective shearing distribution in the stick zone is given by the solution of a frictionless
normal contact problem, for a lower load, but the same rotation of the actual one. This
gives a general method of solution of particular cases, as fully exploited in part II of the
paper.
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APPENDIX I

The general solution ot'the multiple contact problem
It is not within the sope of the present paper to give a full account of all the configurations for which the

normal contact is solved. However, we recall the general solution in quadrature for the multiple contact problem
in order to permit a bettermderstanding of the conditions that affect the pressure in the general case, and as these
solutions are not easily available in the literature. Although they are quite cumbersome to write, it is believed that
the availability of symbolic and numerical programs will permit their greater application. We rewrite the solution
in the form given by Schrayerman (1949) for contact over the range a, ~ x ~ b" i = L ... , n

(AI)

III " IIt I n (x-a",)(x-b",)
\ /tr"l

where

P,,_,(x) = Co +C,x+C,x' +." ·.+C,,_2X" '-Px"-'. (A2)

Coeffcients Co,C,. .... (',,_, of polynomial P,,_, (x) are determined from the system of linear equations in
order to give to u, (x) the proper jumps, i.e. to satisfy the original integral equation in terms of displacements. as
discussed previously. In particular, it can be proved that they are expressible as
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X"- 1

'-====:====:==' +rr-;;-'

!I fI (t~~am)U-bm) I
'Ii m~ I

" h". JiJJy-a",)U-bm) Ih'(t)dt

.:Af"2;,(-l)""I;TI" " t-xi
I n(t-a",Ht-bm ),

"J m= I I

dx (A3)

for m = I, ' , , , n - I, If the contact ejges are determined a priori, the conditions are sufficient to solve the problem;
if, instead, some contact edges are to be determined, a equal number of equations will be determined from the
condition that the presure has to be zero there, If for example, the pressure is bounded at edges x = ai, b" by
requiring the numerator of the solution for p(x) to be zero at x = ai, b" we get

I" IIn" 'h
m

) JIU-a",)U-b",) h'(t)dt

--2::(-1)""'1 +P"(bl ) =0,
n Am=l <J

Um (-hi

(A4)

(A5)

In the particular case of a profile composed by a set of flat surfaces, i,e. h'(x) = 0, for a", ~ x ~ b"" m = I",., n,
the solution for the pressure reduce:; to

p" I (x)

APPENDIX 2

(A6)

The general solution of the periodic contact problem
The solution is available for ue very general case of a periodic contact defined by an infinite number of

contacts, with a periodicity of n c,)ntact areas per period, in the general case of profile, although it is quite
cumbersome to write. We rewrite the Schtayerman solution (1949) for contact of period I, over the range
am ::::; X ~ bm~ m = 1, ... , n

I!I ,n hP(X)=Ai: fI SIn I (x- ",)

\1 m= I . n
, SIn I (x-a",)

+(-1)" m

II" n n II n sin-(x-am)sin-/ (x-bm )

\j 11"1=1 I

where 1'0, 'I", '" i'" are determined by equations

(A7)

(A8)

P 'n ,I("n )"1h

"l-i'I+Y'-YS"'=-/cos ~~ 2i(a",+bm) + Al cos ~ Ihm~, 1
m=\ m_1 m-I a

" ~

and

(A9)
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~ln,-mn:x m
H

.\" I-,cos i dv (-I)" ,

n iT iT 1= --A-- h(a,+n sm-/(x-a•.,)sm-/(x-h",)
m-l

k = 1,2, .... n-1. (AIO)

If some contact edges are to be determined. a equal number of equations will be determined from the
condition that the pressur~ has to be zero there. For the pressure to be bounded at edges x = am' hm (1/1 = 1, ...• n),
the following conditions have to be satisfied

"I :}m sinn
m.=.cl)

(All)

k = 1,2,. . .. n-l. (AI2)

In the latter equations. if ,;ome boundaries are known a priori. the appropriate conditions must be dropped out.


